Signal Processing for Everyone

Gilbert Strang

In the past, signal processing was a topic that stayed almost exclusively in
electrical engineering. It was only the specialists who applied lowpass filters
to remove high frequencies from digital signals. The experts could cancel
unwanted noise. They could compress the signal and then reconstruct. It
took two-dimensional experts to do the same for images.

The truth is that everyone now deals with digital signals and images (in-
volving large amounts of data). We all need to understand signal processing
— sampling, transforming, and filtering. These pages are intended to explain
these basic operations, using simple examples. We will reach as far as filter

banks (in discrete time) and wavelet expansions (in continuous time).

Most signals start their lives in analog form. They become digital by sam-
pling at equal time intervals. If Zanaog(t) is a continuous time signal, its
samples give a discrete time signal:

Zdigital(?) = Tanalog(NT) n=0,%+1,%2,... (1)

The sampling interval is T. We often normalize to T' = 1, by a simple rescaling
of the time variable.

A device that actually does this sampling is called an A-to-D converter.
The input is an analog (A) signal, probably from measurements. The output
is a digital (D) signal, probably for computer processing. Usually an A-to-D
converter loses high frequency information (or mixes it with low frequencies,
which is aliasing). Shannon’s Theorem will tell us that when there are no high
frequencies in the signal, the analog signal can be recovered at all ¢ from its
(digital) samples at the discrete times nT'.

Notice that the signal is assumed to be infinitely long, with no start and no
finish. The time line is —oo < t < co. Then the discrete signal z(n) is defined
for all integers (—oo < m < 00). Neither of these assumptions is exactly true
for real signals. The realistic assumption (this is often well justified) is that
the signal is so long that end effects are not significant. By working with the
whole line R and all integers Z, we can use Fourier methods to the utmost.

November 1, 2000 2

And those Fourier methods are very powerful. The chief tool in our analysis
will be the Discrete Time Fourier Transform, which turns the samples z(n) =
Taigital(1) into the coefficients of a 2m-periodic function X (w):

[e e]

Xw)= Y z(n)e™™. (2)

All terms are unchanged when w is increased by 27. We refer to w as the
frequency, and we graph the transform X (w) between w = —7 and w = 7.
Then “low frequencies” refer to frequencies near zero, and “high frequencies”
have |w| & 7.

Two special signals have the lowest and highest frequencies, w = 0 and w =
w. The pure DC signal z = (...,1,1,1,1,1,...) has exactly zero frequency.
Its transform X (w) has a Dirac delta function at w = 0. More precisely, X (w)
is a periodic train of delta functions of magnitude 27. The pure AC signal
z=1(...,1,—1,1,—1,...) has the highest frequency w = 7 (and w = —m). Its
transform is a train of delta functions at w = £m, £3m,.. ..

This alternation between 1 and —1 gives the fastest oscillation of any dis-
crete signal. Between w = 0 and w = =4 is the family of pure sinusoidal
signals with frequency —m < w <

z,(n) =e for each n. (3)

We are frequently working with systems that respond to these pure inputs
with pure outputs. The output has no change in frequency. The only change
is in amplitude and phase, from multiplication by H(w). This is a Linear Time
Invariant system:

LTI systems: The input z,(n) produces the output H(w)z,(n). (4)

The amplifying factor H(w), also written H ('), is the frequency response. It
varies from one frequency to another, but separate frequencies stay separate.
H(w) is an “eigenvalue” of the system, when the eigenvector is the oscillating
signal z,(n). A Linear Time Invariant system is often called a filter.

We will study filters in detail. First we look again at these special signals —

complex exponentials and real sinusoids. Fourier (and Mozart too) assembled
all signals out of these pure harmonics.

November 1, 2000 3

1 Sinusoidal Signals

The special signal that we call z,, has the complex exponential e as its n'®

sample. Its pure frequency is w. A more general complex exponential has
a positive real amplitude A (not necessarily 1) and a real phase shift § (not
necessarily 0):

z(t) = Ae'Wto) (5)

;From the great formula ¢ = cosf + i sin 6, the real part and imaginary part

are a cosine signal and a sine signal:

Re{Ae!“tt9} = Acos(wt + 6) (6)
Im{Ae@t0) = Asin(wt +)

Notice how these signals have the same frequency w and the same amplitude
A and a phase difference of 7 (or 90°). A cosine function turns into a sine
function if we shift by 3 radians:

sin(f) = cos (0 - E) .

2

The complex exponential is nice because it is a single function. The sinusoid
representation is nice because the cosine and sine are real. Let us emphasize
again that one complex function produces two real functions. But two complex
functions can also produce one real function:

et e ™t = 2cosw

ewt —emWwt — 2ginw.

(7)

So a real sinusoid like cos wt or sin wt, apparently with only one pure frequency
w, actually has two frequencies w and —w!

Note on the relation of frequency to period

The pure sinusoid z(t) = coswt repeats whenever the time ¢ is increased by
27 /w. This is its period T

2
The period of z(t) = coswt is T = Uﬁ : (8)

Suppose 1" is measured in seconds. Then the number of cycles in one second
is f=1/T:

1
The frequency in Hertz is f = T = 21 9)
T

Thus 60 cycles per second is the same as 60 Hertz. A radio wave (whose
existence was demonstrated by Heinrich Hertz) might have a frequency of

November 1, 2000 4:

10°Hz. Notice the simple relation f = w/27 between our two measures of
frequency. We graph a function H(w) between w = —7 and w = 7. Using the
normalized frequency the graph goes from f = —0.5 to f = 0.5. When the
frequency doubles, the period of the signal is halved.

Note on the relation of phase shift to time shift

The symbol 8 represents the phase shift. The total phase is wt+6, the argument
of the sine or cosine, and 6 clearly produces a shift. But there is another way
to obtain the same result. We could shift the time variable t by an amount
6/w. When w multiplies the shifted time variable ¢’ = t + (6/w), the result
wt' = wt + 0 accounts for the phase shift.

There is one small point. By worldwide agreement, a “positive” time shift
represents a “delay.” A function z(¢) undergoing a unit delay becomes z(t—1).
The event that originally happened at ¢ = 5 now waits until ¢ = 6 (because
then ¢t — 1 = 5). The graph shifts one unit to the right. This is a fact of life,
that replacing the argument by ¢’ = ¢ — 1 will delay the event by a unit time.
(And changing the argument to t” = ¢ + 1 will advance the event by a unit
time.)

The complication is that a positive time shift (a delay) corresponds to a
negative phase shift 6. We had one sign in wt + 6 and we have the other sign
in w(t — 1). So this time shift of 1 corresponds to a phase shift § = —w. In
terms of the period T' = 27 /w this is:

At corresponds to phase shift § = —2T At. (10)

The phase shift § = 7 between the sine and cosine corresponds to a time delay
(shift to the right) of a quarter-period At = T'/4.

Note on the sampling period and aliasing

To get a useful discrete-time signal from an analog signal, we must sample
often enough. But too many samples will be expensive and possibly redundant
(unless we are using the sample to draw a continuous graph, as below). Of
course it is the ratio between the sampling period and the true oscillation
period that is critical. The question is how many samples to take in each
up-down oscillation of a sinusoid cos wyt.

We start with a small number of samples:

November 1, 2000 5

1. The critical sampling period Tnyquist has two samples per oscillation. Fig-
ure 1 shows how this can produce the alternating signal 1, —1,1,... with
z(n) = (—1)™. This has the fastest oscillation and the highest frequency
7 of any discrete signal:

1

Wo
Wo TNyquist =m and = — and f sampling — 2f sinusoid (]- 1)
TNyquist T

This Nyquist rate is the borderline between undersampling and oversam-
pling. If the continuous signal is a combination of many sinusoids, the
fastest wg in the combination sets its Nyquist rate.

-Z;T \7 l11 én t - 21 21 t
@ (b) ©

Sampled at Nyquist rate Faster than Nyquist rate Slower than Nyquist rate

Figure 1: Sampling at 1 and 2 and 2 times the Nyquist rate.

2. Sampling at twice the Nyquist rate is oversampling. Figure 1b shows the
samples 1,0,—1,0,1,0,... with z(n) = cos %*. This discrete signal has

=
frequency w = 7.

3. Sampling at % of the Nyquist rate is undersampling. Figure lc shows
how the samples can be the same values 1,0,—1,0,1,0,... as before.
We cannot tell from those samples which sinusoid cos wyt or coswpt/3 is
the continuous time signal. This is aliasing! The slow frequency wg/3
is an alias for the higher frequency wq, because the discrete samples are
the same. A familiar example is watching a wheel turn in the movies.
Often the alias frequency is negative and the wheel appears to be rotating
backwards.

A very clear case of undersampling is half the Nyquist rate (only one
sample per oscillation). That sample will fall at the same point of every
oscillation, so all samples are equal. The discrete signal is then DC
(direct current with samples s, s, s, s, . .. of constant value). The alias of
w=2r/Tis w=0.

November 1, 2000 6

4. Eight samples in a period will give a reasonably good representation.
This linear interpolation is often adequate but it is certainly not perfect.

5. Eighty samples in a period will produce a very lifelike graph. A curved
sinusoid is actually constructed in MATLAB by linear interpolation.

Shannon Sampling Theorem

Every analog signal z(t) with frequencies not exceeding wmax can be perfectly
reconstructed from its discrete samples x(nT'), provided the sampling rate 1/T
exceeds 2 fnax = Wmax/T-

The conclusion of the Shannon Sampling Theorem is always amazing to
me, that a band-limited analog signal (continuous time and low frequencies
only) can be exactly recovered from a countable number of samples (discrete
time). This fact is fundamental to communications and digital signal process-
ing. Sinusoids can be recovered from samples that are taken faster than the
Nyquist rate.

This is not just a statement of good approximation by linear interpolation.
It is a case of perfect reconstruction through interpolation by “sinc functions.”
The interpolation formula (12) will be stated again (with proof). We are
sampling the theorem twice in one book, as Shannon would have wished.

Notice that the signal z(t) = sinwt is not correctly reconstructed from its
samples when 1/T is ezactly the Nyquist rate w/7. Each sample z(nT) =
sinwnT = sinnx is zero! Shannon’s formula (12) will give zero. Reconstruc-
tion requires a strict inequality wsignaiTsampling > 7, and equality (the Nyquist
rate) cuts it too close.

Here is Shannon’s interpolation formula. The function (sint)/t is known
as the sinc function. It equals 1 at ¢t = 0. By shifting to ¢t — nT', we center
a sinc function at the sampling point nT. By scaling with 7/T, we make it
vanish at all other sampling points:

> sin(t —nT)n/T

z(t) = > z(nT) (t —nT)n /T (12)

n=—oo

This is a case when the D-to-A converter, from samples back to the original
function, is an exact inverse of the A-to-D converter. Normally high frequency
information is lost in the A-to-D step. It is irretrievably mixed with low
frequency information, because of aliasing. Shannon’s assumption is that the
signal has no high-frequency information. It is assumed to be band-limited.

November 1, 2000 7

No aliasing occurs, no information is lost, and the transformation from the A
function z(t) to the D signal z(nT') can be reversed.

2 FIR Filters

A filter is the most important operation in signal processing. It acts on a
signal to produce a modified signal. Usually some frequency components of
the input signal are reduced; it is remarkable how simply this can be done.
When the filter is FIR (finite impulse response), each output sample y(n) is
just a linear combination of a finite number of input samples.

The simplest example is a moving average

y(n) = %w(n) + %w(n -1). (13)

This filter combines each sample z(n) with the previous sample z(n —1). The
weights in the linear combination are the filter coefficients % and % The filter
is time-invariant because those coefficients are constant for all time. The filter
is causal because it involves no future samples like z(n + 1). The effect y(n)
never comes earlier than its causes z(n) and z(n — 1). Thus we have a causal
linear time-invariant FIR system.

A noncausal system cannot operate on a real-time signal, because the input
would not be available when the output is required. A pure delay y(n) =
z(n—1) is causal, and acceptable in real-time. A pure advance y(n) = z(n+1)
is anticausal and not acceptable. This certainly applies to audio signals. For
an image the situation is different, because n refers to position not time. The
complete image may be available and the filters in image processing need not
be causal.

What does this particular “running average” filter do to the input signal
z(n)? Consider first three special inputs, an impulse and a constant (DC)
signal and an alternating (AC) signal. Here are the outputs from those inputs:

L. Impulse z(n) = (...,0,0,1,0,0,...)
Impulse Response y(n) = (...,0,0, %, %, 0,...)

The impulse response contains the filter coefficients!

II. Constant z(n) = (...,1,1,1,1,1,...)
Averaged Output y(n) = (...,1,1,1,1,1,...)

The response exactly equals the input; w = 0 is in the passband.

November 1, 2000 8

I11. Alternating z(n) = (...,1,-1,1,-1,1,...)
Averaged Output y(n) = (...,0,0,0,0,0,...)

The response is zero; the frequency w = 7 is in the stopband.

We conclude that the averaging filter is lowpass. Low frequencies are mostly
passed, high frequencies are mostly stopped. To understand the specifics of
that word “mostly,” we have to choose input frequencies between w = 0 and

w = . So the input signal will now be z(n) = ", at the pure frequency w.

The crucial point is that the output signal y(n) is also at frequency w:

. 1. 1. 1 1 _ .
z(n) = €™ produces y(n) = 56’"“’ + 561("_1)“ = [5 + 56_“"] e™ . (14)

The output frequency is the same w, but the amplitude and phase are changed.
The filter multiplies each frequency component of the input by the frequency

response function

, 1 1 .
H(e“") = 5 + 56_%) . (15)

At w = 0, this frequency response is H = 1. Therefore the constant signal
passes unchanged through the filter (as we know). At w = , the frequency
response is H = 0. Therefore the alternating signal is completely blacked out
by the averaging filter. We now separate the function H(e™) into its amplitude
and phase, to see what happens to each individual frequency:

. 1 1 _, , 1, 1 ;
H(ezw) _ 5 + ie—zw _ e—zw/2 (Eezw/2 + Ee—zw/2) _ e—zw/2 (COS %) . (16)

The amplitude is |H| = cos %. It drops from one at w = 0 to zero at w = 7.
The graph of |H| from — to 7 is one arch of a cosine. It shows a passband
and a stopband, where the multiplying factor H(e*) is near one and near zero.
For this very short filter, the transition band in between is very wide. This is
a somewhat crude lowpass filter, but extremely simple and inexpensive.

The phase of H(e™) in equation (16) is ¢ = —w/2. For this filter, the
phase depends linearly on w. This property of linear phase follows directly
from the symmetry of the filter coefficients h(0) = ; and h(1) = ;. Reversing
the order produces no change. More precisely, the coefficients are symmetric
around their middle point (at 1):

Symmetry h(n) = h(1 —n) around ; produces the linear phase —iw.

This is one example of a general rule: symmetry produces linear phase. That
is a highly important property in image processing, because the eye catches
any failure of symmetry after an image is compressed.

November 1, 2000 9

Moving Difference (Highpass Filter)

A second quick example will reinforce these points, by setting up a contrast.
Instead of an averaging filter (coefficients % and %) we take differences:

1 1

y(n) = 51:(”) - Ex(n -1). (17)

This is still FIR and causal. Suppose it acts on the three special input signals.
The response to a unit impulse is the filter coefficients % and —%. The all-ones
input has zero differences, so the lowest frequency w = 0 is stopped. The
highest frequency w = 7 is passed without any change. This is a highpass
filter:

I. Impulse z(n) =6(n) Impulse response y(0) = 1
II. Constant z(n) =1 Zero output y(n) =0
ITI. Alternating z(n) = (—1)" Alternating output y(n) = (—1)".

As for every linear time-invariant system, the response to a pure frequency
signal z(n) = €™ is a multiple y(n) = H(e*)e™ of that signal:
. 1. 1. 1 1 _ :
_ pinw d _ Zpinw _ T i(n—1w _ |: - —'Lw:| inw 18
z(n) = €™ produces y(n) 5€ 5€ 5" 5¢ |e (18)
The multiplying factor is the frequency response function H(e®). Again we
separate the phase factor from the amplitude |H|:
1 1 .) 1. 1 .) w
3~ 56_“" = ¢g"w/? (56“"/2 — 56_“"/2) = e ™/?{sin 5 (19)
The amplitude is [H| = sin ¢. This is zero at w = 0 and one at w = 7. The

filter is highpass (but again not very sharp). The amplitude response is now
a sine instead of a cosine.

The phase factor is e ™/?;. The extra factor i = v/—1 appears because
this filter is antisymmetric. We still call this “linear phase,” although strictly
speaking the linearity ends at w = 7 where sin ¢ changes sign. (At that point

5.
produce a sign change €™ = —1. So the true phase function ¢(w) is linear with

the magnitude changes to —sin %. Therefore the phase must jump by 7 to
jumps.) In short: linear phase filters are symmetric or antisymmetric around
their centers.

Let us emphasize the difference between lowpass and highpass. A lowpass
filter preserves the smooth part of the signal. A highpass filter preserves the
rough and noisy part. In wavelet language, lowpass gives averages and high-
pass gives details. In some applications those details are important to keep

November 1, 2000 10

(like edges in an image). In other applications the high frequencies are mostly
noise (from measurements). A good lowpass filter has many uses, so we look
now at better filters with more coefficients.

3 Better FIR Filters

A causal FIR filter of order N has coeflicients h(0), h(1),...,h(N). Notice that
there are N + 1 coefficients; this is the length of the filter. These coefficients
stay fixed for all time so the filter is time-invariant.

At each time step, the N + 1 coefficients multiply N + 1 samples from
the input signal — the current sample z(n), the previous sample z(n — 1),
continuing back to the sample z(n — N). This weighted combination of input
values produces the output y(n):

y(n) = h(0)z(n) + A()z(n — 1)+ --- + h(N)z(n — N). (20)

This is the action of the filter in the time domain. We may write it compactly
as a sum from k=0to k= N:

N

y(n) =>_h(k)z(n—k). (21)
k=0
A filter is a discrete convolution! It is the fundamental operation for discrete
time-invariant systems. To implement this convolution in hardware, we only
need three building blocks: wunit delay, multiplier, and adder. To account
for the typical term h(1)z(n — 1) in equation (20), the three operations are
represented in Figure 2:

h(1) h(0)z(n)

: l l h(0)a(n)
unit . 2(n —
()| gy ot~ ()bt

Figure 2: The three blocks that build every FIR filter: delay, multiply, add.

In a hardware implementation, the sample value z(n —1) is stored in mem-
ory for one clock cycle and released. A double delay to z(n — 2) is a cascade
of two unit delays. The N-unit delay in the convolution uses N memory cells
and a circular buffer. Basically we have a shift register.

November 1, 2000 1].

Modern DSP microprocessors often combine “multiply-add” into one spe-
cial unit whose speed is critical. We multiply and accumulate, exactly like a
dot product of vectors, h - ¢ = hyxy + hszs + - -+ + h,z,. In numerical lin-
ear algebra this is executed in double precision to minimize the damage from
cancellation of large numbers.

We can implement a filter in MATLAB using the convolution command
conv:
x = 0:4+4 sin(pi*(0:4)/2);
h = [0.25 0.5 0.25];
y = conv(h,x)
The 5-point input vector is linear plus sinusoidal: x = [012 3 4]+[010 —1 0].
The linear part is smooth. The sinusoid has discrete frequency w = 7 because
it takes two time intervals (not just one) to oscillate from its maximum to its
minimum (from 1 to —1).
42714
metric around its center). The high frequency w = 7 is eliminated because

The filter h = [1 L 1} is lowpass and causal and linear phase (it is sym-

the alternating sum is ; — 1 + 7 = 0. The all-ones signal is preserved because
the filter coefficients sum to 1. Actually the linear signal [0 1 2 3 4] is also
preserved (except at the ends of the signal), but you will see how the causal
filter introduces a delay. Let us display that part Yjpear = conv(0 : 4, h) as
an ordinary multiplication of the polynomials (0 + z + 2z% + 3z3 + 4z*) and
(3 + 3o+ 32%):

z(n) 0 1 2 3 4
N S
MOz(m) 0§ § § i
h(1)z(n — 1) 0 : 2 3 4
h(2)z(n — 2) 0 : 2 8 %
conv(h, Tinear) 0 i 1 2 3 23 1

end effect delay to x(n — 1) end effect

Notice that there are seven outputs. An input signal of length L convolved
with an order N filter produces an output of length L + N. A fourth degree
polynomial times a second degree polynomial yields a sixth degree polynomial.

Five terms convolved with three terms produce seven terms.

November 1, 2000 12

At the center of the output, the linear inputs 1,2,3 are preserved (with
a delay). The reason is that not only > h(k) = 1 (which preserves constant
signals) but also 3" kh(k) = 1 (which preserves linear signals).

The end effects have length N = 2, the order of the filter. The effect
appears at the left end because we don’t have the samples z(—2) and z(—1)
that should contribute to y(0) and y(1). (If those missing samples are both
zero than the left end is correct as it stands.) The effect appears at the right
end because we don’t have the samples z(5) and z(6). (We have run out of
samples to match with the filter window.) One of the possible techniques to
produce an output of length L = 5 instead of L + N = 7 is wrap-around or
cycling or periodicity. The right end (22,1) is added to (0, ;) at the left end.
This is circular convolution and for periodic signals it is natural.

Now we input the sinusoid [0 1 0 —1 0]. The output from a filter should
be a sinusoid of the same frequency, but with a different (reduced) amplitude.

Again we have to overlook the end effects:

z(n) 0 1 0 -1 0
h(n) P2 i
h(0)z(n) o L+ o -1 0
h(1)z(n —1) 0 3 0o -3 0
h(2)z(n — 2) 0 : 0 -3 0
conv(h, Tgy) 0o -1 : 0o -1 -2 0
left end sinusoid right end

The output sinusoid has amplitude % There is also a unit delay between input
and output, because the filter is symmetric around h(1). The center of the
filter is at n = 1. The only causal filter centered at n = 0 is the identity filter
h(n) = d(n).

How should we have known that the amplitude is reduced by % at the
discrete frequency w = 57 The answer for all sinusoids is contained in the
frequency response function H(w) = H(e). For the filter A = (3}, 3, 3) the
response is just a polynomial with these coefficients ~(0), h(1), and h(2):

1 1 —iw 1 —2iw
At w = % this is H = —3i. The magnitude at that frequency is |H| = 1
—imw/2

agreeing with the observed 50% reduction in amplitude. The factor —i = e
is responsible for the phase shift (which is the delay).

November 1, 2000 13

When a linear filter is applied to a sum of inputs (linear plus sinusoid), we
get the sum of outputs. So when we know what the filter does to sinusoidal
signals, we know everything. Those special signals take us into the frequency

domain.

4 Filters in the Frequency Domain

In the time domain, a filter combines a signal with delays of that same signal.
The signal z(n — k) with k delays is multiplied by the filter coefficient h(k).
The combination from k = 0 to k = N is the filtered output y(n):

N

y(n) = 3 h(k)z(n — k). (23)

k=0
That is a discrete convolution y = h * = of two vectors.

How does a filter look in the frequency domain? The basic rule is that
a convolution becomes a multiplication. We have seen that already for
pure sinusoids; they are multiplied by H(w). So the same must happen, by
linearity, for any combination of sinusoids.

Algebraically, we multiply the Fourier series H(w) with coefficients h(k)
and the Fourier series X (w) with coefficients z(m). The result is the series
Y (w) with coefficients y(n). In the frequency domain, the output Y is the
input X multiplied by the response function H:

Sy(n)e ™ = (Thk)e *) (Se(m)e ™)

24
Y(w) = H(w)X(w) 24

To get e ™ in the product of e *** with e ™, we must have k+m = n. That

is exactly what we see in the convolution (23). The indices k¥ and n — k add

—tkw i(n—k)w

to n. The products e and e~ multiply to give e~". Equations (23)

and (24) match exactly.

This “convolution rule” is more than just algebra because equation (24)
has a valuable scientific meaning;:

Each component X (w) of the input is amplified by the
filter response H(w) (or H(e™)) at that frequency w.

Now consider a combination of frequencies, integrating over w. We want to
see how such a combination can produce every signal z(n). From its formula,

November 1, 2000 14:

X(w) = Y z(n)e™™ is the (complex!) dot product of {z(n)} with the pure
exponential signal {e™“}. The part of the signal in the direction of that har-

monic is X (w)e™. When these harmonic parts are combined, by integrating

from w = —7 to w = 7 and dividing by 27, we recover the original vector z(n):
1 = .
2(n) = 5- /_ X(@)e™ do. (25)

So X (w) is the input component, and H(w)X (w) is the output component,
and we are truly in the frequency domain.

Example. Suppose the input z is the unit impulse 6 = (...,0,0,1,0,0,...).
This special signal combines all frequencies in equal amounts. Its transform
X(w) is a constant 3" d§(n)e”™™ = 1, because the series has only one term
n = 0. When we reassemble all parts — multiply the pure exponential vectors
{e"™} by 1 and combine all frequencies by integration as in (25), we recover
the impulse as expected:

1 ifnzO}. (26)

1 4 nw o o
%/41-6 d“’_‘s(”)_{ 0 ifn#0

Now filter this input signal 6(n), the impulse. In the time domain, the
convolution has only one term k = n:

y(n) =D _h(k)d(n — k) = h(n). (27)

In the frequency domain, the rule Y (w) = H(w)X (w) reduces to Y (w) = H(w).
As predicted, this matches y(n) = h(n) in the time domain. The transform
of the impulse response {h(n)} is the frequency response H(w). This
is the function that describes the filter in the frequency domain:

H(w) = f: h(k)e ™ = h(0) + h(1)e ™ +--- + h(N)e M. (28)

Let us understand this function graphically. One particular frequency response
H(w) is shown by Figure 3. The filter is lowpass because low frequencies have
H(w) ~ 1. They pass through the filter. The output Y (w) ~ X(w) keeps
those frequencies. High frequencies have H(w) ~ 0, so H(w)X(w) is very
small at these frequencies. We say that the output is a smoothed version of
the input. High frequencies (fast oscillations) are associated with noise, and
the filter removes them. If we want to keep them then we use a highpass filter.

You can see this smoothing in the time domain, but maybe not so well. The
filter coefficients are the time domain outputs when the input is an impulse.

November 1, 2000 15

The vector h(k) of filter coeflicients is certainly smoother than §(n); the spike
at the center is much less prominent. But the details of smoothing are clearer
from H(w) than h(k). The symmetry of the filter is shown by the fact that
the amplitude |H(w)| is an even function:

h(k) = (N — k) means that H(w) = (even function)e /2.

5 Equiripple Lowpass Filters

12

0.8

0.6

|
[
|
|
|
|
[
|
transition band O

0.4

I
I
I
I
I
| 4
I
I
I
|

o

Figure 3: Frequency response for N = 20 and wpass = 0.447, wstop = 0.567.

Figure 3 is the graph of a good lowpass filter of order N = 20. Some designers
might say it is the best. The error in the passband |w| < wpass and in the
stopband |7 — w| < T — weop 1S as small as possible. That is mazimum error,
not mean-square error. We gave the inputs N = 20 and wp,ss = 0.447 and
Wstop = 0.56m to the MATLAB function remez.m and it designed the filter.

The output from remez.m is the set of filter coefficients h(0),. .., h(20).
We can multiply H(e™) by e 1% to center it, with no change in amplitude.
Then the cosine polynomial |H (e*)| has degree ten; it stops at cos 10w.

November 1, 2000 16

The special feature of this minimax filter is its equiripple property. All “rip-
ples” in the stopband plus passband have the same magnitude. This property
tells us immediately that we cannot reduce all errors (the error is the distance
from the ideal 1-0 filter in the graph). No correction could have the required
plus or minus sign at all twelve frequencies, because those signs are alternating
and the correction would cross zero too often (11 times between 0 and) for
a polynomial of degree 10. This little bit of mathematics, where the degree
of the polynomial limits how often it can alternate sign, is the foundation of
minimax approximation theory.

The design method used by MATLAB is called the Remez algorithm or
the Parks-McClellan algorithm. The Remez idea of iteratively reducing the
largest error until the graph is equiripple was adapted by Parks and McClellan
for filter design. Users often assign a heavier weight W > 1 to the errors in
the stopband, and then the stopband ripples have smaller heights 6 /W'.

In a practical design problem, we need to know what length of filter to
ask for. Therefore the relation of the error § to the order N and the cutoff
frequencies (wpass and wetop) is highly important in practice. Certainly § de-
creases exponentially with N. The key exponent in e N was estimated by
Jim Kaiser from numerical experiments, and his empirical formula has been
adjusted by many authors. A recent paper [12] by Shen and the author gave
the asymptotically correct formula

N 201og;o(m6) "t — 10logyologe 6t

29
(10logyge) Incot =2« (29)

Here Aw = Wstop — Wpass 18 the transition bandwidth. (We use the awkward
form 20log,, because this gives the quantity in decibels.) In the transition
band between wpass and wstop, the dropoff from H(w) ~ 1 to H(w) =~ 0 is
described by an error function. Shen’s formula

H(w) = erf (\/? m ;S:p__‘fj’nfw)) , (30)

InW+ilnlnW
Sy(W) = 2?\7 ;

gives a good fit in this “don’t care region” around a critical frequency near

with

W = %(wpass + Wstop)- As N — oo the equiripple filters approach the ideal
one-zero filter with cutoff at weritical-

Of course the equiripple filter is not the only candidate! If we accept larger
ripples near the endpoints wpass and wstop, We can have smaller ripples inside

November 1, 2000 17

the passband and stopband. A fairly extreme case (not usually recommended)
is a least squares filter design. The filter minimizes the energy in the error,
possibly weighted by W, instead of the maximum error:

Choose H(w) to minimize / |H(w) — 1) dw + W / |H(w)|*dw. (31)

passband stopband

We know the result when the passband meets the stopband (wpass = Wstop)-
Then H(w) is approximating an ideal 1-0 square wave or brick wall filter.
There is a Gibbs oscillation at the discontinuity. The maximum error E, an
overshoot right at the jump, quickly approaches the famous Gibbs constant.
For large order N, the worst ripples have fixed height even though the integral
of (ripples)? is as small as possible. This Gibbs phenomenon is one of the great
obstacles to accurate computations near a shock front.

6 Wavelet Transforms

A lowpass filter greatly reduces the high frequency components, which often
represent noise in the signal. For some purposes that is exactly right. But
suppose we want to reconstruct the signal. We may be storing it or transmit-
ting it or operating on it, but we don’t want to lose it. In this case we can
use two filters, highpass as well as lowpass. That generates a “filter bank,”
which sends the signal through two or more filters.

The filter bank structure leads to a Discrete Wavelet Transform. This has
become a guiding idea for so many problems in signal analysis and synthesis.
In itself the transform is lossless! Its inverse (the synthesis step) is another
transform of the same type — two filters that are fast to compute. Between
the DWT and the inverse DWT we may compress and transmit the signal.
This sequence of steps, transform then compress then reconstruct, is the key

to more and more applications.

The word wavelet is properly associated with a multiresolution into differ-
ent scales. The simplest change of scale comes from downsampling a signal —
keeping only its even-numbered components y(2n). This sampling operation
is denoted by the symbol | 2:

S~

(42)

Qe
—~ A~
N =
— — — —
|
—
Qe
—_
N O
~— —
—

November 1, 2000 18

Information is lost. But you will see how doubling the length by using two
filters, then halving each output by (| 2), can give a lossless transform. The
input is at one time scale and the two half-length outputs are at another scale
(an octave lower).

lowpass filter |—| | 2|—— averages
Input

highpass filter |— | 2}—— details

Figure 4: The discrete wavelet transform: averages and details.

Note that an input of even length L produces two outputs of length L /2,
after downsampling. The lowpass filter Hy and the highpass filter H; origi-
nally maintain length L, when we deal suitably with the samples at the ends
(possibly by extending the signal to produce the extra components that the
filter needs). Figure 4 shows this combination of two filters, with each output
downsampled. The redundancy from 2L outputs is removed by (| 2). Then
the overall filter bank is L by L.

To simplify the theory we often pretend that L = oco. This avoids any
difficulty with the samples at the ends. But in reality signals have finite
length.

The wavelet idea is to repeat the filter bank. The lowpass output in Figure 4
becomes the input to a second filter bank. The computation is cut in half
because this input is half length. Typical applications of the wavelet transform
go to four or five levels. We could interpret this multiscale transform as (quite
long!) filters acting on the very first inputs. But that would miss the valuable
information stored in the outputs (averages and details) along the way.

7 The Haar Transform

We now choose one specific example of a filter bank. At first there is no
iteration (two scales only). Then we iterate to multiple scales. The example is
associated with the name of Alfred Haar. It uses the averaging filter (moving
average) and the differencing filter (moving difference). Those were our earliest
and simplest examples of a lowpass filter and a highpass filter. So they combine
naturally into the most basic example of a filter bank. It will be convenient
(but not necessary) to reverse the sign of Hj.

November 1, 2000 19

The two filters are denoted by Hy (lowpass) and H; (highpass):

(z(n—1) +(n))

Yo = Hoz is the averaging filter yo(n) = 3
y1 = Hiz is the differencing filter y;(n) = 3(z(n — 1) — z(n)).

Suppose the input signal is zero except for four samples z(1) = 6, z(2) = 4,
z(3) = 5, £(4) = 1. This input vector is x = (6,4,5,1). We are looking for
its coefficients in the Haar wavelet basis. Those will be four numbers, yo(2)
and yo(4) from subsampling the lowpass output together with y;(2) and y;(4)
from highpass.

In reality we would not compute the odd-numbered components y(1) and

y(3) since they are immediately destroyed by ({2). But we do it here to see
the complete picture. Take averages and differences of z = (6,4,5,1):

w(l) = 3 wn(l) = -3
Y(2) = 5 n(2) = 1
Averages yo(3) = 4.5 5 (Differences) y1(3) -0.5
Yo(4) = 3 yi(4) = 2
%(5) = 0.5 y1(6) = 05

You might notice that the sum of the y, vector and the y; vector is the in-
put z = (6,4,5,1) with a unit delay (to z(n — 1)). This comes from a simple
relation (average + difference) that is special to Haar:

%(m(n Z 1)+ 2(n)) + %(az(n “1)—2(n) =2(n—1).

It is more important to notice that the differences tend to be smaller than
the averages. For a smooth input this would be even more true. So in a
compression step, when we often lose information in the highpass coefficients,
the loss is small using the wavelet basis. Here is a first look at the whole
compression algorithm:

wavelet compressed compressed ..
coefficients coefficients signal

signal x

[lossless] [lossy] [lossless|

At this point we have eight or even ten coefficients in yo and y;. They are
redundant! They came from only four samples in z. Subsample by |2 to keep
only the even-numbered components:

Y(2) = 5 y(2) = 1
Yo(4) = 3 yi(4) = 2.

Those are the four “first-level wavelet coefficients” of the signal. The inverse
transform (which is coming in the next section) will use those coefficients to

November 1, 2000 20

reconstruct . That will be the synthesis step. Computing the coefficients was
the analysis step:

Analysis: Find the wavelet coefficients (separate the signal into wavelets)
Synthesis: Add up wavelets times coefficients (to reconstruct the signal).

It is like computing Fourier coefficients, and then summing the Fourier series.
For wavelets, the analysis filter bank (H, and H; followed by | 2) computes
the coefficients. The synthesis filter bank (this inverse wavelet transform will
involve upsampling by 12 and two filters) sums the wavelet series.

Now go from the lowpass yo(2) = 5 and yo(4) = 3 to the next scale by

computing averages of averages and differences of averages:

54+3
-

===

2(2) = 4 21(2) 1.

This completes the iteration of the Haar analysis bank. We can see the three
scales (fine, medium, and coarse) in a block diagram that shows the tree of
filters with subsampling:

yo(n) yo(2n)
’ yl(n) v1(2n)

Effectively, z comes from downsampling by 4. The vector zq(2n) contains the

low-low coefficients, averages of averages. The high-low vector z;(2n) is also i
the length of the original signal. The highpass vector y;(2n) is half the original
length, and % + % + % =1 (this is critical length sampling).

You will ask, why not take averages and differences also of this first highpass
output y;(2n)? That is certainly possible. A “wavelet packet” might choose
to do it. But the basic wavelet tree assumes that the highpass coefficients are
small and not worth the additional effort. They are candidates for compression.
For a typical long smooth signal, iteration to four or five scale levels will further
decorrelate the samples. Iterations beyond that are generally not worthwhile.

Summary: The input is x = (6,4,5,1). The wavelet coefficients are
(4,1,1,2):

(low-low zp, high-low z;, high y;1) = (4,1, 1, 2).

November 1, 2000 2].

The special point of the wavelet basis is that you can pick off the highpass
details (1 and 2 in y;), before the coarse details in z; and the overall average
in zg. A picture will explain this multiscale pyramid:

Split = = (6,4,5,1) into averages and waves at small scale and
then large scale:

1
6 | 4|5

averagesi \iliﬁerences /2

(2) = 1
5 5 ﬁ plus 1—— 2|_ 51543 = 2
m— __,2
a'veragei \{iiﬂ"erence /2
20(2) = 4
4 4 4 4 plus 1———1 z1(2) =1
11—

8 Reconstruction by the Synthesis Bank

The averaging-differencing filter (named for Haar) produces two outputs from

two successive inputs:
1
yo(2n) = —(z(2n — 1)+ z(2n))
2
2 (32)
y1(2n) = 5(:3(271 —1) —z(2n))
It is easy to recover z(2n — 1) and z(2n). In fact, the inputs are just sums and
differences of these outputs:
z(2n—1) = yo(2n) + y1(2n)
z(2n) = yo(2n) — y1(2n)

Thus the reconstruction step uses the same operations as the analysis step.

(33)

Other analysis banks don’t have this simple “two at a time” block struc-
ture, but the basic principle still applies. We will show how filtering followed
by downsampling is inverted by upsampling followed by filtering. This
sequence of inverse operations (and the notation) is displayed in the following
diagram. This is the synthesis bank:

November 1, 2000 22

Lowpass channel: yo(2n) —

+

Highpass channel: y;(2n) —

The goal is to recover the input exactly, when no compression has been applied

Z(n) =z(n —¥£).

to the wavelet transform z(n). The synthesis bank does recover z but with
¢ delays (¢ depends on the filter bank). Long delays are not desirable, but
causal filters cannot avoid some delay. The filter only looks backward.

First, we show how the combination of upsampling and filtering recovers
the input to the Haar filter (with one delay!).

%0(0) yogoi
0 sum 0(0
(12w = | o) | = ke 7|~ | i) | z(-1)
0 Yo(2) | z(0)
T z(1)
yléo) yl%g; z(2)
difference !
M2Duln) = qy | 7 [fker 1| y(2) - (34)
0 —y1(2) |

At the end we used equations (33) for the sum and the difference, to produce z.

The choice of synthesis filters Fy and Fj is directly tied to the analysis
filters Hy and H; (since the two filter banks are inverses). We will write down
the rule for Fy and F}, and show that it succeeds (perfect reconstruction).
Fy comes from alternating the signs in H;. This takes the highpass H; into a
lowpass filter Fy. Similarly, the highpass F}; comes from alternating the signs
of the coefficients in Hy. An example will make the point more clearly:

1 1
ho = —(—1,2,6,2, —1) fo= —(1,2, 1)
8 >§ 2
1 1
h‘l = 5(1a_2a 1) fl = Z(1a2a _6a2’ 1)

The coefficients of h; and f; add to zero; a zero-frequency signal (a constant
DC signal) is killed by these highpass filters. The coefficients of hq add to 1
and the coefficients of f, add to 2. The filters hg = (3, 1) and fo = (1,1) in
the Haar example followed these rules.

We can verify that this analysis-synthesis filter bank gives perfect recon-
struction with £ = 3 delays: The output is z(n — 3). Suppose the input is a
sinusoid z(n) = €™ at frequency w. Then Hy and H; become multiplications

by their response functions Hy(e*”) and H;(e*). The combination of ({ 2)

November 1, 2000 23

followed by (1 2) introduces zeros in the odd-numbered components, which

means that the alias frequency w + 7 appears together with w:

inw

e

(12 (12 ey = | Moot | = L[ty + ey (s9)

0(odd n)

The factor €™ is +1 for even n and —1 for odd n. This aliased frequency
w -+ 7 is appearing in both channels of the filter bank. It has to be cancelled at
the last step by Fy and Fj. This was the reason behind the alternating signs
(between hg and f; and between h; and fy). Those alternations introduce

powers of €™ in the frequency response functions:

) 1 , ,
Fo(ezw) — _(1+2e—zw+e—2zw)

2
1) ,
_ 5(1 _ 26—1(w+7r) + 6—21(w—|—7r))
= 2H,(e“T) = 2H,(e™™). (36)
Similarly,
Fl(ei“’) = —2H0(67i(w+ﬂ-)) = —2H0(67iw) (37)

Now follow the pure exponential signal through analysis and synthesis,
substituting these expressions (36)— (37) for Fy and F; when they multiply
the signal (the last step in the filter bank):

iw) i 1 o o
Ho(ezw)e'mw — — 5 [Ho(ezw)e'mw + HO(—eZ“’)e"n(“’+7T)]
— — Hl(_eiw)HO(eiw)einw + Hl(_eiw)HO(_eiw)ein(w+1r)

Hl (ezw)e'mw N N 5 [Hl (ezw)e'mw + Hl (_ezw)eln(uI-l—ﬂ)]
— _) HO(_eiw)Hl(eiw)einw . HO(_eiw)Hl(_eiw)ein(w—l-w))

These are the outputs from the low and high channels. When we add, the
alias terms with frequency w + 7 cancel out. The choice of Fy and F; gave
“alias cancellation.”

The condition for perfect reconstruction comes from the terms involving
e™. Those don’t cancel! The sum of these terms should be €™ 9 which

produces the

PR Condition: Hy(—e™)Hy(e™) — Ho(—e™)Hy(e™) = e *. (38)

November 1, 2000 24:

This must hold for all frequencies w. If we replace w by w + 7, the left side
of the equation changes sign. Therefore, the right side must change sign, and

the system delay ¢ is always odd.
Actually, the left side of (38) is exactly the odd part of the product

. . . 1 . .
P(e*) = Hi(—€e*)Hy(e™) = iFo(e“")Ho(e“"). (39)
The PR condition states that only one odd-numbered coefficient of this lowpass
filter is nonzero. That nonzero coefficient is the /2. We now verify that the
example satisfies this PR condition:
w 1 —iw —2iw 1 —iw —2iw —3iw —4iw
P(e*) = 1(1—{—26 +e)g(—1+2e + 6e” " 4 27 — e M)

1 , , , ,
— 3_2(_1 + 9672%) + 16673%; + 967411‘) _ efﬁzw) .

The coefficients of the product filter P are —1,0,9,16,9,0, —1 divided by 32.
The middle coefficient is % = % The zeros in the other odd-numbered co-
efficients give perfect reconstruction. And it is the particular coefficients in
-1,0,9,16, 9,0, —1 that make P a powerful lowpass filter, because it has a
fourth-order zero at the top frequency w = w. Factoring this polynomial pro-

duces '
1 + e—’Lw

P(e*) = (TY (=1 +4e™™ — 72w, (40)

Roughly speaking, the power (1 + e *)* makes P a good lowpass filter. The

final factor is needed to produce zeros in the first and fifth coefficients of P.

Remark. The PR condition applies to the product P and not the separate
filters Hy and H;. So any other factorization of P(e™) into Hy(—e™)Hy(e™)
gives perfect reconstruction. Here are two other analysis-synthesis pairs that

November 1, 2000 25

share the same product P(e™):

1
Biorthogonal ho = 1_6(_1a1,8,8,1,—1) fo = (1,1)
6/2 1 .
hl - _(1,_1) fl = _(_1’1?_838)_1)1)
2 8
1
hy = §(1+\/§,3+\/§,3_\/§,1_\/§)
1
Orthogonal fo = 1(1_\/3’3_\/5,3-1-\/5,1-1—\/5)
4/4 1

fi= (-1~ v33+ V3 -3+V51-V3)

The second one is orthogonal because the synthesis filters are just transposes
(time-reversed flips) of the analysis filters. When the inverse is the same as
the transpose, a matrix or a transform or a filter bank is called orthogonal. If
we wrote out the infinite matrix Hy,p for this analysis pair, we would discover
that FlLank is essentially the transpose. (There will be a factor of 2 and also
a shift by 3 diagonals to make the matrix lower triangular and causal again.
These shifts are responsible for the £ = 3 system delays.)

The algebra of PR filter banks was developed by Smith-Barnwell and
Mintzer in the 1970s. The iteration of those filter banks led to wavelets in
the 1980s. The great paper of Ingrid Daubechies [2] gave the theory of orthog-
onal wavelets, and the first wavelets she constructed came from the coefficients
(14++/3,34++/3,3 — /3,1 — 1/3) given above.

The other filter banks, not orthogonal, are called biorthogonal. Synthesis is
biorthogonal to analysis. The rows of Hy.y, are orthogonal to the columns of
Fyank—except that (row k) - (column k) = 1. This is always true for a matrix

and its inverse:
HF =1 means (rowjof H)-(columnk of F)=46(j — k).

The rows of H and columns of H~! are biorthogonal. The analysis and synthe-
sis wavelets that come below from infinite iteration will also be biorthogonal.
For these basis functions we often use the shorter word dual.

November 1, 2000 26

9 Scaling Functions and Refinement Equation

May I write down immediately the most important equation in wavelet the-
ory? It is an equation in continuous time, and its solution ¢(t) is the “scaling
function.” This section will describe basic examples, which happen to be
spline functions. In later sections the connection to a filter bank and to mul-
tiresolution will be developed. More precisely, the connection is to the lowpass
operator (}.2)Hj of filtering and downsampling.

This fundamentally new and fascinating equation is the refinement equa-
tion or dilation equation:

N

o(t) = 23 h(k)g(2t — k). (41)

k=0

The factor 2 gives the right side the same integral as the left side, because
each ¢(2t — k) has half the area (from compression to 2¢) and > h(k) = 1. It
is the inner factor 2, the one that rescales ¢ to 2¢, that makes this equation so
remarkable.

Equation (41) is linear. If ¢(¢) is a solution, so is any multiple of ¢().
The usual normalization is [¢(t) dt = 1. That integral extends over all time,
—00 < t < 00, but we actually find that the solution ¢(t) is zero outside the
interval 0 < t < N. The scaling function has compact support. This
localization of the function is one of its most useful properties.

Example 1. Suppose h(0) = h(1) = 1 as in the averaging filter. Then the

refinement equation for the scaling function ¢(t) is

o(t) = (2t) + ¢(2t — 1). (42)

The solution is the unit box function, which equals 1 on the interval 0 <t < 1
(and elsewhere ¢(t) = 0). The function ¢(2t) on the right side of the equation
is a half-boz, reaching only to ¢ = 1. The function ¢(2t — 1) is a shifted half-

1

boz, reaching from ¢ = ; to t = 1. Together, the two half-boxes make up the

whole box, and the refinement equation (42) is satisfied.
Notice in this example the two key operations of classical wavelet theory:

Dilation of the time scale by 2 or 27:
The graph of ¢(2t) is compressed by 2.

Translation of the time scale by 1 or k&:
The graph of ¢(t — k) is shifted by k.

November 1, 2000 27

Figure 5: Three half-length hats combine into a full-length hat.

The combination of those operations, from ¢ to 27t to 2/t — k, will later produce

a family of wavelets w(2/t — k) from a single wavelet w(t).

Example 2. Suppose h(0) = 3, h(1) = 1, h(2) = ;. The averaging filter
has been repeated. Whenever we multiply filters (Toeplitz matrices), we are
convolving their coefficients. Squaring a filter means convolving the vector of
coefficients with itself, and this is verified by (3,3) * (3,3) = (5,3,3)- This
convolution is just a multiplication of a polynomial times itself:

<1+1 _1)2_1+1 _1+1 .
272°) TaT® T4t

The solution ¢(t), which is the scaling function for A = (3, 3, 1), is the old
solution convolved with itself:

(box function) * (box function) = hat function.

The box is piecewise constant. The hat is piecewise linear, equal to ¢t and 2 —¢
on the intervals [0,1] and [1,2]. Figure 5 shows how three compressed and
shifted hat functions combine into the full hat function. The picture verifies
the refinement equation ¢(t) = 3¢(2t) + ¢(2t — 1) + 36(2t — 2).

Example 3. (Splines of degree p— 1). Every time an extra averaging filter is
introduced, we are convolving ¢(t) with the box function. This makes the filter
coefficients and the scaling function smoother; the function has one additional
derivative. From a product of p averaging filters, the frequency response is
()P, Its k™ coefficient will be the binomial number (Z) = “p choose k”
divided by 2°.

November 1, 2000 28

The scaling function for this filter is a B-spline on the interval [0, p]. This
spline ¢(t) is formed from polynomials of degree p — 1 that are joined together
smoothly (p — 2 continuous derivatives) at the nodes ¢ = 0,1,...,p. This is
the convolution of p box functions:

- 11y /11 11y 1 p(p—1)
Filter: <2,2>*<2,2>* *(2,2>_2p (1,p, 5 N |
Function: (box) * (box) * - - - * (box) = B-spline of degree p — 1.

These are essentially all the examples in which the scaling function ¢(¢) has
a simple form. If we take h(0) = 2 and h(1) = 3, we get a very singular
and unbounded solution, with infinite energy. It blows up at ¢t = 0, where (41)
becomes ¢(0) = 5¢(0), but it is not a standard delta function. After convolving
with (3, 3), the coefficients h = (3, 3, ¢) are much better. The scaling function
is smoother and in L2. But still we have no elementary expression for ¢(¢) when
the refinement equation has these coefficients. All we can do is to compute
#(t) at more and more binary points ¢ = m/27, or find its Fourier transform
(see below). We can graph the function as accurately as desired, but we don’t

know a simple formula.

Now we begin the connection with a filter bank. The output from a lowpass
filter (convolution with h), followed by downsampling (n changes to 2n), is
but it is not a standard delta function. Y h(k)z(2n — k). Suppose this output
goes back in as input. (This is iteration.) The process could be studied in
discrete time, but continuous time is more interesting and revealing. So the
original input is a box function, and we get ¢t (¢) from ¢®(¢):

Filter and rescale: ¢tV (t) = 2 Z h(k)o® (2t — k). (43)

This is the cascade algorithm. The lowpass filter is “cascaded.” If this
iteration converges, so that ¢()(¢) approaches a limit ¢(t) as i — oo, then that

limit function satisfies the refinement equation (41).

In this sense the scaling function is a fixed point (or eigenfunction with
A = 1) of the filtering-downsampling operation 2(| 2)Hy. The normalization
by 2 is necessary because time is compressed by 2 at each iteration. Starting
from the box function ¢(®(t) on [0,1], the function ¢® () will be piecewise
constant on intervals of length 27°. Thus continuous time gives a natural way
to account for the downsampling (n — 2n and ¢t — 2t). This time compression
is clearer for a function than for a vector.

November 1, 2000 29

When we apply the iteration (43) for the averaging filter h = (%, %), we
find () = ¢(®. The convergence is immediate because the box ¢(® is the

correct scaling function. When we use h = (1 L 1) every iteration produces

41274)
a “staircase up and down” with steps of 27*. The function ¢()(¢) is a piecewise
constant hat, supported on the interval [0,2 — 27¢]. The limit as i — oo is the

correct piecewise linear hat function ¢(¢).

Similarly the B-spline comes from the cascade algorithm. But for other
coefficients h(k), always adding to 1, there may or may not be a limit function.
The functions ¢ (t) can converge to a limit ¢(t), or they can explode. If you
try the bad filter h = (2, 1), you find that ¢)(0) = (%)°. And the iterations
explode at infinitely many other points too (please try this example). A natural

question is to find the requirement for the cascade algorithm to converge:
1. For which filters h(k) does ¢(?(¢) approach a limit ¢(t) in L2?

A minimal condition is that 3(—1)*h(k) = 0. In the frequency domain, this
is the response H(e™) = Y h(k)e ™ at the highest frequency w = w. The
filter must have a “zero at n” for convergence to have a chance (and this
eliminates many equiripple lowpass filters). The precise Condition E is on the
eigenvalues of a matrix (as we expect in all iterations!):

Condition E: The matrix T' = 2(}.2) H HT must have all eigenvalues |\| < 1,
except for a simple eigenvalue \ = 1.

This is a familiar condition for convergence of the powers 1" of a matrix to a
rank one matrix (as in the “power method” to compute eigenvalues).

You might like to see three rows of T" for the hat filter h = (i, %, i):
1 146 (41
— 1146

1

2(12)HHT =T = 2 1

4

4/ 6 41

Note the double shift between rows which comes from (] 2). The coefficients
1,4,6,4,1 come from HHT. In polynomial terms, we are multiplying H(z) =
H(1+2271+27%) by its time-reversed flip H(27!) = (1+2t+2?). The matrix
product HHT is an autocorrelation of the filter.

We have highlighted the crucial 3 by 3 matrix inside 7. Its three eigenvalues
are A = 1, %, i. Because of the double shift, the rest of 7" will contribute
A = g (twice) and XA = 0 (infinitely often). No eigenvalue exceeds A = 1 and
Condition E is clearly satisfied.

November 1, 2000 30

A very short MATLAB program will compute 7" from the coefficients h(k)

and find the eigenvalues. There will be A = 1, %, i, .

response H (™) has a p*® order zero at w = 7. It is the largest other eigenvalue

,22,,%1, when the filter

[Amax| of T that decides the properties of ¢(t). That eigenvalue |Ayax| must
be smaller than 1. This is Condition E above for convergence of the cascade
algorithm.

We mention one more important fact about |Apax|, without giving the proof
here. This number determines the smoothness of the scaling function (and
later also of the wavelet). A smaller number means a smoother function. We
measure smoothness by the number of derivatives of ¢(¢) that have finite
energy (belong to the space L?). This number s need not be an integer. Thus
the box function is in L?, and its first derivative (delta functions §(¢) —d(t—1))
is certainly not in L2. But at a jump, all derivatives of order s < % do have
finite energy:

oo d3¢ 2 oo 2
Energy :/ v dt :/ ‘(iw)sgb(w)‘ dw .
The Fourier transform of the box function has |¢(w)| = |sincw| < const /|w|.

Then for every s < %,
oo
Energy in st derivative < const + const / lw|* 2 dw < 00.
1

The hat function is one order smoother than the box function (one extra Haar
factor). So it has derivatives with finite energy up to order s = % The general
formula for the smoothness of ¢(t) is remarkably neat: All derivatives have

finite energy, up to the order

Smax — — 10g4 |)‘|max . (44)

For the hat function and its filter h = (3,1, 1), the double eigenvalue A = %

was mentioned for the matrix 7' above. This is Apax and the formula (44)
3

correctly finds the smoothness s = —log,(3) = 3.

We can explicitly solve the refinement equation in the frequency domain,
for each separate w. The solution a(w) is an infinite product. The equation
connects the scales t and 2t, so its Fourier transform connects the frequencies
w and w/2:

The transform of ¢(2t — k) is [¢(2t — k)e i dt = %e’i‘*’kﬂa(

N[E

).

November 1, 2000 31

Then the refinement equation ¢(t) = 2" h(k)¢(2t — k) transforms to
dw) = (Shwe™2)§(5) =1 (5)5(3) - (45)

By iteration (which is the cascade algorithm!), the next step gives ¢(w) =

~

H(5)H($)¢(5). Infinite iteration gives the infinite product formula

~ e w . ~

d(w) = jI:IIH (2—]> (since ¢(0) =1). (46)
This product gives a finite answer for each frequency w, so we always have a
formula for the Fourier transform of ¢(¢). But if |Amax| > 1 and Condition E
fails to hold, the inverse transform from @(w) to ¢(t) will produce a wild
function with smoothness s < 0 and infinite energy.

In the case of box functions and splines, this infinite product simplifies to

sinc functions and their powers:

—iw —iw\ P
o) = (1557) and Bl) = () @)
In an interesting recent paper, Blu and Unser [16] use this formula to define
splines for noninteger p. These fractional splines are not polynomials, and
their support is not compact, but they interpolate in a natural way between
the piecewise polynomial splines (where p is an integer).

The Daubechies 4-tap filter produces a scaling function with sy, = 1.
The “lazy filter” with only one coefficient h(0) = 1 produces ¢(t) = Dirac
delta function. You can verify directly that §(¢) = 20(2¢), so the refinement
equation is satisfied. In the frequency domain, H(w) = 1 so that ¢(w) = 1.
The smoothness of the delta function is one order lower (s = —3) than the
step function: H = I and T'= 2] and |Apax| =2 and s = —log, 2 = —%.

10 Multiresolution and the Spaces A

Our first explanation of the refinement equation ¢(t) = 2 h(k)p(2t — k)
was by analogy. This is a continuous time version of filtering (by h) and
downsampling (¢ to 2t). When we iterate the process, we are executing the
cascade algorithm. When the initial ¢(®)(¢) is the box function, all iterates
¢ (t) are piecewise constant and we are really copying a discrete filter bank.
We are iterating forever! In this description, the refinement equation gives the
limit of an infinite filter tree.

November 1, 2000 32

Now we give a different and deeper explanation of the same equation. We
forget about filters and start with functions. Historically, this is how the
refinement equation appeared. (Later it was realized that there was a close
connection to the filter banks that had been developed in signal processing,
and the two histories were joined. Wavelets and lowpass filters come from
highpass and lowpass filters. An M-channel filter bank would lead to one
scaling function, with M’s instead of 2’s in the refinement equation, and M —1
wavelets.) But the first appearance of ¢(t) was in the idea of multiresolution.

Multiresolution looks at different time scales, t and 2t and every 27t. These
correspond to octaves in frequency. When a problem splits naturally into sev-
eral time scales or frequency scales, this indicates that the wavelet approach
(multiresolution) may be useful. Wavelets are another tool in time-frequency
analysis comparable to the windowed “short-time” Fourier analysis that trans-
forms f(t) to a function of the window position ¢ and the frequency w. For
wavelets, it is a time-scale analysis, with j for the scale level and k for the
position. The wavelet coefficients produce a “scalogram” instead of a spectro-
gram.

Start with Mallat’s basic rules for a multiresolution [10]. There is a space
Vo, containing all combinations of the basis functions ¢(¢ — k). This shift-
invariant basis produces a shift-invariant subspace of functions:

Property 1: f(t) is in V; if and only if f(¢ — 1) is in Vj.

Now compress each basis function, rescaling the time from ¢ to 2¢. The func-
tions ¢(2t — k) are a new basis for a new space V. This space is again shift-
invariant (with shifts of 7). And between V; and V; there is an automatic

scale-invariance:
Property 2: f(t) is in V; if and only if f(2¢) is in V;.

Now we come to the crucial third requirement. We insist that the sub-
space V; contains Vj. This requires in particular that the subspace V; con-
tains the all-important function ¢(¢) from V5. In other words, ¢(¢) must be a
combination of the functions ¢(2¢t — k) that form a basis for V;:

Property 3. (Refinement Equation) ¢(t) = Y cxp(2t — k).

When this holds, all other basis functions ¢(t — k) at the coarse scale will be
combinations of the basis functions ¢(2t — k) at the fine scale. In other words
VW C V.

November 1, 2000 33

I hope that every reader recognizes the connection to filters. Those coeffi-
cients ¢ in Property 3 will be exactly the filter coefficients 2h(k). Previously
we constructed ¢(t) from the refinement equation. Now we are starting from
Vb and V] and their bases, and the requirement that V; contains V; gives the
refinement equation.

The extension to a whole “scale of subspaces” is immediate. The space V;
consists of all combinations of ¢(27t) and its shifts ¢(27t—k). When we replace ¢
by 27t in the refinement equation (Property 3), we discover that V; is contained
in Vj;11. Thus the sequence of subspaces is “nested” and Vo C Vs C Vo C ---.

There is one optional property, which was often included in the early papers
but is not included now. That is the orthogonality of the basis functions ¢(t —
k). The Daubechies functions possess this property, but the spline functions
do not. (The only exception is the box function = spline of degree zero =
Haar scaling function = first Daubechies function.) In the orthogonal case,
the coefficients c; in the refinement equation come from an orthogonal filter
bank. Certainly orthogonality is a desirable property and these bases are very
frequently used — but then ¢(t) cannot have the symmetry that is desirable
in image processing.

To complete the definition of a multiresolution, we should add a require-
ment on the basis functions. We don’t insist on orthogonality, but we do
require a stable basis (also known as a Riesz basis). We think of V; as a sub-
space of L? (the functions with finite energy || f||2 = [|f(#)|?dt). The basis
functions ¢(t — k) must be “uniformly” independent:

Property 4. (Stable Basis) || X2 axd(t—k)||* > c¢X ai with ¢ > 0.

This turns out, beautifully and happily, to be equivalent to Condition E on
the convergence of the cascade algorithm. An earlier equivalent condition on
@(t) itself was discovered by Cohen. We can also establish that the spaces V;
approximate every finite energy function f(¢): the projection onto V; converges
to f(t) as j — oo. And one more equivalent condition makes this a very
satisfactory theory: the scaling functions ¢(t—k) together with the normalized
wavelets 2//2w(27t — k) at all scales j = 0,1,2, ... also form a stable basis.

We now have to describe these wavelets. For simplicity we do this in the
orthogonal case. First a remark about “multiwavelets” and a word about the
order of approximation to f(t) by the subspaces V.

Remark. Instead of the translates ¢(t — k) of one function, the basis for V4
might consist of the translates ¢;(t — k), ..., #,(t — k) of r different functions.

November 1, 2000 34:

All of the properties 14 are still desired. The refinement equation in Prop-
erty 3 now takes a vector form, with » by r matrix coefficients cx: 1} is a

subspace of V; when all the functions ¢ (%), ..., ¢.(t) are combinations of the
basis functions ¢;(2¢t — k), ..., ¢,.(2t — k):
¢1(t) ¢1(2t — k)
o= :
¢7‘(t) ¢r(2t - k)

The corresponding lowpass filter becomes a “multifilter,” with vectors of r
samples as inputs and r by 7 matrices in place of the numbers h(0), ..., (N).
The processing is more delicate but multifilters have been successful in denois-
ing [15].

The new feature of multiwavelets is that the basis functions can be both
symmetric and orthogonal (with short support). A subclass of “balanced”
multifilters needing no preprocessing of inputs has been identified by Vetterli-
LeBrun [9] and by Selesnick [11].

11 Polynomial Reproduction and Accuracy of
Approximation
The requirements for a good basis are easy to state, and important:

1. Fast computation (wavelets are quite fast)

2. Accurate approzimation (by relatively few basis functions).

We now discuss this question of accuracy. When f(t) is a smooth function,
we ask how well it is approximated by combining the translates of ¢(t). Why
not give the answer first:

Hf(t)— > and(@t k)| < 02| @0)| (48)

This says that with time steps of length h = 277, the degree of approximation
is hP. This number p is still the multiplicity of the zero of H(e") at w = .
This error estimate (48) is completely typical of numerical analysis. The
error is zero when f(t) is a polynomial of degree p—1. (We test Simpson’s Rule
and every quadrature rule on polynomials.) The Taylor series for f(t) starts

November 1, 2000 35

with such a polynomial (perfect approximation). Then the remainder term
involves the p** derivative f®)(¢) and the power h?. This leads to the error
estimate (48). So the degree of the first polynomial ¢? that is not reproduced
by the space V determines the crucial exponent p.

The box function has p = 1. The error is O(h) in piecewise constant

1_'_6271'.4.1)2-

The error is O(h?) in piecewise linear approximation. The 4-tap Daubechies

approximation. The hat function has p = 2 because H(e™) = (

filter also has p = 2, and gives an error that is O(h?). Daubechies created
a whole family with p = 2,3,4,... of orthogonal filters and scaling functions
and wavelets. They have 2p filter coefficients and approximation errors O(h?).
They are zero outside the interval from ¢ = 0 to t = 2p — 1.

We can briefly explain how the order p of the zero at w = 7 turns out to
be decisive. That multiple zero guarantees that all the polynomials
1,t,t%,...,t*P! can be exactly produced as combinations of ¢(t — k). In
the frequency domain, the requirement on ¢(w) for this polynomial reproduc-
tion is known as the Strang-Fix condition:

& .
w(%m) =0 forn#0andj<p. (49)

Thus a(w) at the particular frequencies w = 27n is the key.

Formula (46) for ¢(w) is an infinite product of H(w/27). At frequency
w = 27n, we write n = 2¢q with ¢ odd. Then the factor in the infinite product
with j = £+ 1 is H(2mn/2%') = H(gqr). By periodicity this is H(w). A
pth order zero of qAb lies at w = 27n. Thus the Strang-Fix condition on q? is
equivalent to Condition A, on the filter:

Condition A,: H(e*) has a p™ order zero at w = 7.

For the filter coefficients, a zero at 7 means that >>(—1)"h(n) = 0. A zero of
order p translates into 3(—1)"n*h(n) =0 for k=0,...,p— 1.

It is remarkable to see in Figure 6 how combinations of ¢(¢ — k) produce
a straight line, when ¢(¢) is the highly irregular Daubechies scaling function
coming from h = §(1+ V3,3+/3,3—+/3,1—+/3). The response H(¢*) has a
double zero at w = m. The eigenvalues of T = 2({2)HH" are A\=1,3, %, 1, 5
which includes the 1, %, i,% that always come with p = 2. The smoothness
s =1 of the D4 scaling function is governed by that extra i = Amax-

November 1, 2000 36

1 2 3
-1

Figure 6: With p = 2, the D4 scaling functions Y k¢(t — k) produces a straight
line.

12 Multiresolution and Wavelets

When j increases by 1, the mesh size h = 277 is multiplied by % The error
of approximation by scaling functions is reduced by (3)P. There are twice as
many functions available when approximation at scale j uses the translates of
a compressed ¢(2t):

The approximation space V; contains all combinations of the
shifted and compressed scaling functions ¢(2/t — k), —oo < k < oo.

The special feature of these spaces is that V; contains V; (and every V4
contains V;). This comes directly from ¢(¢) = 23 h(k)p(2t—k). The right side
of the refinement equation is a function in Vi, at scale 7 = 1. Therefore the left
side ¢(t) lies in V;. So do all its translates, and all their linear combinations.
Thus the whole of 1} lies in Vj.

Now we look at the functions that are in V; but not in V. This will lead
us to the wavelet space Wy. The sum of the subspaces Vg + Wy will equal V;.

The increasing sequence of spaces Vo C V; C Vo C --- leads us to a
multiresolution of any finite-energy function f(t). Suppose first that the
functions ¢(t — k) are orthogonal. Let f;(t) be the perpendicular projection
of f(t) onto the space V;. Thus f;(¢) is the nearest function to f(¢) in V;. We
will write f(t) as a telescoping sum

F@) = fo(t) + [f1(2) = fo(&)] + [fa(t) = Fr(B)] +--- . (50)

This is the sum of a lowest-level “coarse function” fy(¢) and an infinite series
of “fine details” d;(t) = f;+1(t) — f;(t). Those details will lie in the wavelet

November 1, 2000 37

subspaces W;. So the splitting of one function f(t¢) indicates the splitting of
the whole space of all L? functions:

LP=Vo+Wo+Wy+-- (51)

Notice that each detail d;(¢) also lies in the next space V;,4 (because f;;; and
f; are both in V;;). Thus Wj is in V;;. Furthermore d;(t) is orthogonal to
Vj;, by simple reasoning:

f(t) — f;(t) is orthogonal to V; because f; is the projection

f(t) — fj+1(t) is similarly orthogonal to Vj; and therefore to V.

Subtraction shows that the detail d;(t) = f;+1(¢t) — f;(t) is orthogonal to V.

We assign the name W, to the wavelet subspace containing all those “detail
functions” in V,; that are orthogonal to V;. Then the finer space V4 is a
sum of coarse functions f;(t) in V; and details d;(t) in W;:

For functions: f;(t) + d;(t) = fj+1(t)
For subspaces: V; +W; = V;4

The function f(t) is a combination of the compressed translates ¢(27t — k),
which are a basis for V;. We want the detail d;(t) to be a combination of
compressed translates w(27t—k), which are a basis for W;. The fundamental
detail function w(t) will be the wavelet.

The wavelet has a neat construction using the highpass coefficients hq(k):
Wavelet Equation: w(t) =2 hi(k)@(2t — k). (52)

The right side is certainly in V5. To prove that w(t) is orthogonal to ¢(t) and
its translates, we use the relation h; (k) = (—1)*ho(N — k) between the lowpass
and highpass coefficients. We omit this verification here, and turn instead to
the most basic example.

The Haar wavelet is w(t) = ¢(2t) — ¢(2t — 1) = up-and-down box function.
It is a difference of narrow boxes. Its integral is zero. (Always [w(t)dt =0
because Y hi(k) = 0.) Furthermore the Haar wavelets w(2’t — k), compressed
and shifted versions of the square wave w(t), are all orthogonal to each other

and to the box function ¢(¢). This comes from the orthogonality of the Haar
filter bank.

A biorthogonal filter bank will have four filters Hy, Fy, H1, F;. Then H
and F, yield two different scaling functions @(t) and ¢(t), in analysis and

November 1, 2000 38

synthesis. Similarly H; and Fj yield analysis wavelets w(¢) and synthesis
wavelets w(t). The orthogonality property becomes biorthogonality between
analysis and synthesis:

[(@it —kydt= [3yt~ Ky =o.

13 Good Basis Functions

This section returns to one of the fundamental ideas of linear algebra — a
basis. It often happens that one basis is more suitable than another for a
specific application like compression. The whole idea of a transform (this
paper concentrates on the Fourier transform and wavelet transform) is exactly
a change of basis. Each term in a Fourier series or a wavelet series is a basis
vector, a sinusoid or a wavelet, times its coefficient. A change of basis gives a

new representation of the same function.

Remember what it means for the vectors wy,ws,...,w, to be a basis for
an n-dimensional space R™:

1. The w’s are linearly independent.
2. The n x n matrix W with these column vectors is invertible.

3. Every vector z in R™ can be written in exactly one way as a combination
of the w’s:

X:C1w1+62’w2+"'+cn’wn.

Here is the key point: those coefficients ¢y, - - -, ¢, completely describe the
vector. In the original basis (standard basis), the coefficients are just the

samples z(1),...,z(n). In the new basis of w’s, the same x is described by
ci,--.,Cy. It takes n numbers to describe each vector and it also takes a choice
of basis:

CE(l) Z0(2)

z(2) 21(2)

x = and x =

z(3) y1(2)

2(4) Istandard basis v1(4) I Haar basis
A basis is a set of axes for R". The coordinates cy,...,c, tell how far to go
along each axis. The axes are at right angles when the basis vectors wy, ..., w,

are orthogonal.

November 1, 2000 39

The Haar basis is orthogonal. This is a valuable property, shared by the
Fourier basis. For the vector z = (6,4,5,1) with four samples, we need four
Haar basis vectors. Notice their orthogonality (inner products are zero).

1 1 1 0
1 1 —1 0
1= 2= _ Ws=1 9 Wa=1 4
1 ~1 0 ~1

That first basis vector is not actually a wavelet, it is the very useful flat
vector of all ones. It represents a constant signal (the DC component). Its
coefficient ¢, is the overall average of the samples this low-low coeflicient c;
was i(6 +4+4 5+ 1) = 4 for our example vector.

The Haar wavelet representation of the signal is simply = We. The
input z is given in the standard basis of samples. The basis vectors wy, ..., w,
go into the columns of W. They are multiplied by the coefficients ¢y,..., ¢4
(this is how matrix multiplication works!). The matrix-vector product We is
exactly cyw; + cows + c3ws + cqwy. Here are the numbers in z = We:

6 1 1 1 0 4
4 1 1 -1 0 1
51 |1 -1 0 1 1 (53)
1 1 -1 0 -1 2

Those coefficients ¢ = (4,1,1,2) are W—'z. This is what the analysis filter
bank must do; a change of basis involves the inverse of the basis matrix. The
analysis step computes coefficients ¢ = W'z, and the synthesis step multiplies
coefficients times basis vectors to reconstruct z = We.

The point of wavelets is that both steps, analysis and synthesis, are exe-
cuted quickly by filtering and subsampling. Let me extend this point to repeat
a more general comment on good bases. Orthogonality gives a simple relation
between the transform and the inverse transform (they are “transposes” of
each other). But I regard two other properties of a basis as more important
in practice than orthogonality:

Speed: The coefficients ¢y, ..., c, are fast to compute.

Accuracy: A small number of basis vectors and their coefficients
can represent the signal very accurately.

For the Fourier and wavelet bases, the speed comes from the FFT and FWT:
Fast Fourier Transform and Fast Wavelet Transform. The FWT is exactly the
filter bank tree that we just illustrated for the Haar wavelets.

November 1, 2000 40

The accuracy depends on the signal!l We want to choose a basis appropriate
for the class of signals we expect. (It is usually too expensive to choose a basis
adapted to each individual signal.) Here is a rough guideline:

For smooth signals with no jumps, the Fourier basis is hard to beat.

For piecewise smooth signals with jumps, a wavelet basis can be better.

The clearest example is a step function. The Fourier basis suffers from the
Gibbs phenomenon: oscillations (ringing) near the jump, and very slow %
decay of the Fourier coefficients c¢,,. The wavelet basis is much more localized,
and only the wavelets crossing the jump will have large coefficients. Of course
the Haar basis could be perfect for a step function, but it has slow decay for
a simple linear ramp. Other wavelets of higher order can successfully capture
a jump discontinuity in the function or its derivatives.

To emphasize the importance of a good basis (an efficient representation
of the data), we will list some important choices. Each example is associated
with a major algorithm in applied mathematics. We will mention bases of
functions (continuous variable z or t) although the algorithm involve vectors
(discrete variables n and k).

1. Fourier series (sinusoidal basis)
2. Finite Element Method (piecewise polynomial basis)
3. Spline Interpolation (smooth piecewise polynomials)

4. Radial Basis Functions (functions of the distance ||z—z;|| to interpolation
points z; in d dimensions)

5. Legendre polynomials, Bessel functions, Hermite functions, .. . (these are
orthogonal solutions of differential equations)

6. Wavelet series (functions w(2/z — k) from dilation and translation of a
wavelet).

There is a similar list of discrete bases. Those are vectors, transformed by ma-
trices. It is time to see the matrix that represents a lowpass filter (convolution
matrix), and also the matrix that represents a filter bank (wavelet transform

matrix).

November 1, 2000 4:].

14 Filters and Filter Banks by Matrices

We begin with the matrix for the averaging filter y(n) = 1(z(n — 1) + z(n)).
The matrix is lower triangular, because this filter is causal. The output at
time n does not involve inputs at times later than n. The averaging matrix
has the entries 1 on its main diagonal (to produce z(n)), and it has } on its
first subdiagonal (to produce iz(n — 1)). We regard the vectors z and y as
doubly infinite, so the index n goes from —oo to oo. Then the matrix that
executes this filter is H = Hayeraging:

z(n —1)

y=Hz = ? z % z(n)
5 % z(n+1)

Multiplying along the middle row of Hz gives the desired output y(n) =
1(z(n—1)+=(n)). Multiplying the pure sinusoid with components z(n) = e

gives the desired output y(n) = (5 + 3e~*)e™™. Thus the frequency response

wn

function H(e™) = % + %e‘i“’ is the crucial multiplying factor. In linear algebra
terms, the sinusoid z = €™™ is an eigenvector of every filter and the frequency
response H(e™) is the eigenvalue).

We might ask if this averaging matrix is invertible. The answer is no,
because the response % + %e‘i“’ is zero at w = w. The alternating sinusoid
z(n) = €™ = (—1)" averages to zero (each sample is the opposite of the
previous sample). Therefore Hz = 0 for this oscillating input.

When the input is the impulse z = (...,0,1,0,...), the response Hz is
exactly a column of the matriz. This is the impulse response h = (%, %, 0,...).

Now look at the matrix for any causal FIR filter. It is still lower triangular
(causal) and it has a finite number of nonzero diagonals (FIR). Most important,
the matrix is “shift-invariant.” Each row is a shift of the previous row. If
(h(0),h(1),h(2),h(3)) are the coefficients (a,b, c,d) of a four-tap filter, then
those coeflicients go down the four nonzero diagonals of the matrix. The

coefficient h(k) is the entry along the k*" diagonal of H:

S

I

Qo
QU O o
o o
> Q
I~

This is the Toeplitz matriz or convolution matriz.

November 1, 2000 42

Otto Toeplitz actually studied finite constant-diagonal matrices. Those
are more difficult because the matrix is cut off at the top row and bottom
row. The pure sinusoids z = €*™ are no longer eigenvectors; Fourier analysis
always has trouble at boundaries. The problem for Toeplitz was to understand
the properties of his matrix as N — oo. The conclusion (see Szegé and
Grenander [7]) was that the limit is a singly infinite matrix, with one boundary,

rather than our doubly infinite matrix (no boundaries).
The multiplication y = Hx executes a discrete convolution of x with h:

n

y(n) = 3 h(k)z(n — k). (55)

k=0

This impulse response h = (a, b, ¢, d) is in each column of H.

The eigenvectors are still the special exponentials z(n) = ¢*". The eigen-
value is the frequency response H(e*). Just multiply z by a typical row of H,

and factor out e™":

y(n) _ deiw(n73)+ceiw(n72)_i_beiw(nfl)_{_aeiwn
_ (defi?;w + ce 2% 4 peiv 4 a) giwn
— H(eiw)eiwn]

To say this in linear algebra language, the Fourier basis (pure sinusoids) will
diagonalize any constant-diagonal matrix. The convolution Hx = hxx becomes
a multiplication by H(e*’). This is the convolution rule on which filter design
is based.

A single filter is not intended to be inverted (and is probably not invertible).

To move toward filter banks we introduce downsampling. This is the length-
reducing operation (] 2)y(n) = y(2n). Since it is linear, it can also be rep-
resented by a matrix. But that matrix does not have constant diagonals! It
is not a Toeplitz matrix. Downsampling is not shift-invariant, because a unit
delay of the signal produces a completely different set of even-numbered sam-
ples (they previously had odd numbers). In some way the matrix for | 2 is
short and wide:

1 y(0) y(0)
wa=l-o0L vy | = 0(2) | (56)
(4)

November 1, 2000 43

One interesting point about this matrix is its transpose (tall and thin). Mul-
tiplying by (J 2)T will put zeros back into odd-numbered samples. This is
exactly the process of upsampling (denoted by 12):

1oo| o |0
1:=02%=| [||V |=],q| ©?
o L@ 0
1 | 2(2) |

The product (12)(]2), with downsampling first, is different from (}2)(12):

y(0)
0

(t12)(2)y = | ¥(2) but (12)(12)z = z.
0

y(4)
The lossy equation ({2) has a right inverse (12) but not a left inverse.

Now combine filtering with downsampling. The “2” enters into the convo-

lution:
({2)Hz(n) = y(2n) = ;; h(k)z(2n — k). (58)

This is the crucial combination for filter banks and wavelets. It is linear but not
shift-invariant. To execute (| 2)H by a matrix, we remove the odd-numbered
rows of H. This leaves a short wide matrix whose rows have a double shift:

o

[STR -

(12)H = (59)

L o
o

The matrix multiplication (| 2)Hyz produces the subsampled lowpass output
yo(2n), which is half of the wavelet transform of z.

The other half of the transform is from the highpass channel. It begins
with the second filter H;. The output y; = H;z is subsampled to produce
y1(2n) = (1 2)Hyz. The two half-length vectors z, and 2; give the “averages”
and “details” in the input signal x. There is overlap between them at all
frequencies because the filters are not ideal (they don’t have brick wall perfect
cutoffs). With properly chosen filters we can still reconstruct z perfectly from

Yo(2n) and y1(2n).

November 1, 2000 4:4:

The analysis filter bank consists of (] 2)Hy and (| 2)H;. To express the
wavelet transform in one square matrix, we combine those two matrices (each

containing a double shift):

ho(3) ho(2) ho(1) ho(0)

hi(3) ha(2) ha(1) ha(0)
hi(3) hi(2) ha(1) hy(0)

The diagonal of Hy,nx is not constant and the filter bank is not shift-invariant.
But it is double-shift invariant! If the input x is delayed by two time steps,
then the output is also delayed by two time steps — and otherwise unchanged.
We have a block FIR time-invariant system.

Notice that the columns containing even-numbered coeflicients are sepa-
rated from the columns containing odd-numbered coefficients. The filter bank
is dealing with two phases, Zeven and x,qq, which are producing two outputs,
Yo(2n) and y(2n).

For a single filter, we selected the special input x(n) = e“". The filter
multiplied it by a scalar H(e*). The pure frequency w was preserved. For
a filter bank, the corresponding idea is to select an even phase Zeven(n) =
z(2n) = ae®™ and an odd phase T,qq(n) = z(2n — 1) = Be™". Then the
output in each channel again has this frequency w:

aeiw(nfl)
ﬂeiwn HO even HO odd Xeven
H an. iwn = ’ ’ . 61
banlk ae H 1,even H 1,0dd Xoaa ()
ﬂeiw(n—i—l)

The crucial point is to identify that 2 by 2 polyphase matriz, which is the
block analog of the frequency response function H(e*) for a single filter. The
polyphase matrix is

H (eiw) _ HO,even HO,odd — Z h0(2k)ezkw Z ho (2k3 + 1)61:’“‘)
poly Hl,even Hl,odd E hl(2k)ezkw E hl (2k + 1)6““"

(62)
In the analysis of filter banks (see [14] and other textbooks), the polyphase
matrix plays the leading part. Let us mention the most important point:

November 1, 2000 45

The polyphase matriz for the synthesis filter bank is the inverse of Hyoy:

H;!. corresponds to H_ o, (e*)

Therefore the synthesis filter bank is FIR only if Hp_011y is a finite polynomial
(not an infinite series in €*). Since the inverse of a matrix involves division by
the determinant, the condition for an FIR analysis bank (wavelet transform)

to have an FIR synthesis bank (inverse wavelet transform) is this:
The determinant of Hyo, (€) must be a monomial Ce™ (one term only).

Then we can divide by the determinant, and the inverse matrix is a finite poly-
nomial. This is the requirement for a perfect reconstruction FIR filter bank.
From H~!(e*’) we construct the inverse transform, which is the synthesis bank.

Remark 1. You can see the blocks more clearly by interlacing the rows of
(42)Hy and (] 2)H;. This will interlace the output vectors yo(2n) and y;(2n).
We are doing this not in the actual implementation, but in order to recognize
the block Toeplitz matriz that appears:

ho(3) ho(2) ho(1) ho(0)
hi(3) ha(2) ha(1) hi(0)
Hyjoa = ho(3) ho(2) ho(1) ho(0) (63)
hi(3) ha(2) ha(1) ha(0)

The same 2 by 2 matrix is repeated down each block diagonal.

Remark 2. Matrix multiplication is optional for time-invariant filters and
doubly infinite signals. Many non-specialists in signal processing are com-
fortable with matrices as a way to understand the action of the transform
(and block matrices correspond perfectly to block transforms). Specialists
may prefer the description in the frequency domain, where a filter multiplies
by the simple scalar response function H(e*). In popular textbooks like Op-
penheim and Schafer’s Discrete-Time Signal Processing, there is scarcely a
single matrix. I meet those students in my wavelet class, and they thoroughly
understand filters.

For the finite-length signals that enter in image processing, and for time-
varying filter banks of all kinds, I believe that matrix notation is valuable.
This approach is especially helpful for non-specialists (who think first of the

November 1, 2000 46

signal in time or space, instead of in the frequency domain). So we want to
comment briefly on the matrices that describe filtering for a signal of finite
length L.

The “interior” of the matrix will have constant diagonals as before. The
entry in the k*" diagonal is the filter coefficient h(k). At the top rows and/or
bottom rows (the ends of the signal) some change in this pattern is necessary.
We must introduce boundary conditions to tell us what to do when the con-
volution y(n) = X h(k)z(n — k) is asking for samples of z that are outside
the image boundary (and therefore not defined). We may change h(k) near
the boundary or we may extend z(n) beyond the boundary — but we have to
do something! And it is often clearest to see y = Hpx as an L by L matrix
multiplication.

A crude approach is zero-padding, which assumes that those unknown sam-
ples are all zero:

Define z(n) =0 for n<0 and n> L.

In this case the infinite Toeplitz matrix is chopped off to a finite Toeplitz
matrix. We have an L by L section of the original matrix. The result is a
discontinuity in the signal and a visible artifact (sometimes a dark band at
the boundary) in the reconstruction. Most software does better than this.

Cyclic convolution, which assumes a periodic signal with z(L) = z(0), is
more popular. It preserves the Fourier structure, the DFT of length L. There
is perfect agreement between circulant matrices (Toeplitz with wrap-around
of the diagonals) and diagonalization by the DFT. The eigenvectors of every

circulant matrix are the DFT basis vectors v, = (1, w*, w?

y-..) wWith w =
exp(2mi/L). Note that wl = 1, which assures the periodic wrap-around. The
corresponding eigenvalues of the circulant matrix are the numbers H(w*) =
H(e¥*/L) for k = 0,...,L — 1. We are seeing L discrete frequencies with

equal spacing 27/ L, instead of the whole continuum of frequencies |w| < 7.

An example will put this idea into matrix notation. The cyclic averaging
filter for length L = 4 is represented by a 4 by 4 circulant matrix:

1 00

1
Hcyclic = 5

oo
[RS
— = O
—_ oo

The entry % is on the main diagonal and the first subdiagonal — which cycles
around into the top right corner of the matrix. If we apply Heyelic to an

November 1, 2000 47

input z, the output y is the moving average (with the cyclic assumption that

z(—1) = z(3)):

T + x
Y= HcyCIica: = 5 58(2) + $(1)
z(3) + z(2)

You can see that the zero-frequency input z = (1,1, 1, 1) is an eigenvector with
eigenvalue H(e®) = 1. The next eigenvector is * = (1,4, —1,—i) containing

2mi/ L

powers of e = 4. The eigenvalue is 1(1—¢), which agrees with the response

H(e®) = % + %e‘i“’ at the frequency w = 7/2. Thus circulant matrices are a
perfect match with cyclic convolution and the DFT.

A third approach is preferred for symmetric (or antisymmetric) filters. We
extend the signal symmetrically. At each boundary, there are two possible

symmetric reflections:

“Whole-sample” = Reflection with no repeat: z(2),z(1),z(0),z(1), z(2)
“Half-sample” = Reflection with a repeat: z(2),z(1),z(0),z(0),z(1),z(2)

We choose the reflection that agrees with the filter. Symmetric even-length
filters have repeats as in a, b, b, a; the symmetric odd-length filter a, b, c, b, a has
no repeat. This extension process is easy to implement because the filter can
act normally on the extended signal, and then the output y is reduced back
to length L (and subsampled, when the filter bank includes | 2). Chapter 8
of our joint textbook Wavelets and Filter Banks (Wellesley-Cambridge Press
1996) gives the details of symmetric extension [14].

The top and bottom rows of the filter matrix H are modified by this “fold-
across” coming from symmetric extension of the input signal. The matrix
remains banded but the diagonal entries change in a systematic way near the
boundaries. In an FIR filter bank with FIR inverse, the key point is that
both transforms (analysis and synthesis, deconstruction and reconstruction)
remain banded. This bandedness means a fast transform with a fast inverse.
So wavelets have the two essential properties, speed of execution and accuracy
of approximation, that make them a good transform.

15 Filters and Wavelets for 2D Images

It is easy to describe the most popular and convenient 2-dimensional filters.
They come directly from 1-dimensional filters. Those are applied to each

November 1, 2000 4:8

separate row of the image. Then the output is reorganized into columns, and
the 1-dimensional filters are applied to each column.

This produces four outputs instead of the usual two. The low-low output
(lowpass filter on rows and then columns) normally contains most of the energy
and the information. This quarter-size image is the input to the next iteration.
Effectively, one step of the analysis bank has downsampled the signal by four.

—{Hol—12F—yoo(2m, 2n

—Hi {2} —yon
12—y

—{Hi 12l —yn (2m, 2n

It is useful to follow through the Haar example. The low-low output will

2m, 2n

2m, 2n

()
()
Yol)
()

be an average over four samples — two neighbors from each row and then
averaged over two neighboring rows:

y00(2m, 271,)
1
=1 [z(2m, 2n) + z(2m — 1,2n) 4+ z(2m,2n — 1) + z(2m — 1,2n — 1)]

The other three outputs y;0 and yg; and y;; involve the same four input sam-
ples. There are minus signs from taking differences instead of averages. The
four sign patterns give the same four outputs as a 2-dimensional Discrete
Fourier Transform on 2 X 2 points:

+ o+ + - + o+ + -
+ + + - - - -+

The middle two outputs pick up vertical and horizontal edges. The last output
includes (but not so well) any diagonal edges. The 2D version of longer filters
with more zeros at w = 7 will be much better, but they still have this bias to
the vertical and horizontal directions. These are “separable” filters or “tensor
product” filters — they separate into 1D times 1D.

When we reconstruct from these four pieces of the wavelet transform, we
get four output images. With perfect reconstruction and no compression,
they add up to the input image. Each piece uses a quarter of the transform
coefficients. It is usual to display the four quarter-size reconstructions in one
original-size image (and the low-low part in one corner is always recognizable
as a blurred version of the input).

November 1, 2000

low-low | high-low
(close to | (vertical
original) edges)
low-high | high-high
(horizontal | (little
edges)| energy)

49

The next iteration (which effectively has downsampling by 16) splits the low-
low quarter of this display into four smaller pieces.

It is also possible to develop genuinely two-dimensional filters. We think of
the samples as positioned on a lattice in the two-dimensional plane. We could
use all gridpoints (m,n), as above, or we could use the “quincunx lattice” that
keeps only half of those points (m + n is even) on a staggered mesh. The
nonseparable filters can be more isotropic (less dependent on zy orientation
of the image). But these filters quickly become complicated if we want higher
accuracy. The separable filters are much simpler to implement, and more
popular.

In continuous time, for functions instead of vectors, we have one scaling
function and three wavelets. The scaling function comes from a two-
dimensional refinement equation. The coefficients are ho(k,£) for a nonsepa-
rable 2D lowpass filter, and they are ho(k)ho(£) when the filter is separable.
In that case the refinement equation is

¢($a y) =4 Z Z hO(k)h0(€)¢(2m - ka 2y - E) (64)

The solution will be the product ¢(z)¢(y) of two 1-dimensional scaling func-

tions.

Similarly the three wavelet equations will have coefficients ho(k)hi(¢) and
hi1(k)ho(€) and hq(k)hi(€). The resulting wavelets are ¢(z)w(y) and w(z)o(y)
and w(z)w(y). Their translates form a basis for the wavelet subspace W.

16 Applications: Compression and Denoising

We have concentrated so far on the wavelet transform and its inverse, which
are the linear (and lossless) steps in the action diagram. This final section will
discuss the nonlinear (and lossy) step, which replaces the wavelet coefficients
y(2n) by approximations y(2n). Those are the coefficients that we use in
reconstruction. So the output 7 is different from the input z.

November 1, 2000 50

We hope that the difference z—Z is too small to be heard (in audio) and too
small to be seen (in video). We begin by recalling the big picture of transform
plus processing plus inverse transform:

wavelet compressed compressed ..
coefficients coefficients signal

signal x

[lossless] [lossy] [lossless]

A basic processing step is thresholding. We simply set to zero all coeffi-
cients that are smaller than a specified threshold a:

Hard threshholding: §(2n) = 0 if |y(2n)| < «. (65)

This normally removes all, or almost all, the high frequency components of
the signal. Those components often contain “noise” from random errors in
the inputs. This process of denoising is highly important in statistics and
Donoho [5] has proposed a suitable threshold a = o+/2N, with standard de-

viation ¢ and N components.

Notice that thresholding is not a linear operation. We are keeping the
largest components and not the first N components. This is simple to execute,
but the mathematical analysis by DeVore and others requires the right function
spaces (they are Besor spaces). We refer to [4] for an excellent summary of
this theory.

A more subtle processing step is quantization. The inputs yo(2n) are
real numbers. The outputs 7o(2n) are strings of zeros and ones, ready for
transmission or storage. Roughly speaking, the numbers yy(2n) are sorted
into a finite set of bins. The compression is greater when more numbers go
into the “zero bin.” Then we transmit only the bin numbers of the coefficients,
and use a value 7 at the center of the bin for the reconstruction step. A vector
quantization has M dimensional bins for packets of M coefficients at a time.

This transform coding is of critical importance to the whole compression
process, It is a highly developed form of roundoff, and we mention two basic
references [6, 8]. I believe that quantization should be studied and applied in
a wide range of numerical analysis and scientific computing.

The combination of linear transform and nonlinear compression is fun-
damental. The transform is a change to a better basis — a more efficient
representation of the signal. The compression step takes advantage of that
improved representation, to reduce the work. New transforms and new bases
will be needed in processing new types of signals. The needs of modern tech-
nology impose the fundamental message that has been the starting point of
this paper: Signal processing is for everyone.

November 1, 2000 5].

References

[1] A. Cohen and R.D. Ryan, Wavelets and Multiscale Signal Processing,
Chapman and Hall, 1995.

[2] I. Daubechies, Orthonormal bases of compactly supported wavelets,
Comm. Pure Appl. Math. 41 (1988) 909-996.

[3] I. Daubechies, Ten Lectures on Wavelets, STAM, 1993.
[4] R. DeVore and B. Lucier, Wavelets, Acta Numerica 1 (1991) 1-56.

[5] D. Donoho, De-noising by soft thresholding, IEEE Trans. Inf. Theory 41
(1995) 613-627.

[6] R.M. Gray, Source Coding Theory, Kluwer, 1990.

[7] U. Grenander and G. Szego, Toeplitz Forms and Their Applications, Uni-
versity of California Press, Berkeley, 1958.

[8] N.J. Jayant and P. Noll, Digital Coding of Waveforms, Prentice-Hall,
1984.

[9] J. LeBrun and Vetterli, Balanced wavelets: Theory and design, IEEE
Trans. Sig. Proc. 46 (1998) 1119-1124; Higher order balanced multi-
wavelets, ICASSP Proceedings (1998).

[10] S. Mallat, Multiresolution approximation and wavelet orthonormal bases
of L? (R), Trans. Amer. Math. Soc. 315 (1989) 69-87.

[11] I. Selesnick, Multiwavelets with extra approximation properties, IEEE
Trans. Sig. Proc. 46 (1998) 2898-2909; Balanced multiwavelet bases based
on symmetric FIR filters, IEEE Trans. Sig. Proc., to appear.

[12] J. Shen and G. Strang, The asymptotics of optimal (equiripple) filters,
IEEE Trans. Sig. Proc. 47 (1999) 1087-1098.

[13] G. Strang, The Discrete Cosine Transform, STAM Review 41 (1999) 135—
147.

[14] G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-
Cambridge Press, 1996.

November 1, 2000 52

[15] V. Strela and A. Walden, Signal and Image Denoising via Wavelet Thresh-
olding: Orthogonal and Biorthogonal, Scalar and Multiple Wavelet Trans-
forms, Imperial College, Statistics Section, Technical Report TR-98-01
(1998).

[16] M. Unser and T. Blu, Fractional splines and wavelets, SIAM Review 41
(1999), to appear.

